Brillouin light scattering microscopy and spectroscopy
The TFP-2 spectrometer is based on a tandem 3+3 pass Fabry-Perot interferometer arrangement. The instrument is intended primarily for the study of Brillouin spectra, particularly of many, or broad, features over an extended spectral range. The flexibility is such that even Raman spectra (out to about 500 cm-1) may be measured. The construction allows a change of mirror spacing with a minor loss of alignment, so that full alignment may be achieved again within seconds.
Publications
KESHMIRI, H.; URBÁNEK, M.; CIKES, D.; ŠÁMALOVÁ, M.; SCHINDLER, L.; APPEL, L.; YUDUSHKIN, I.; SLADE, D.; WENINGER, W.; PEAUCELLE, A.; PENNINGER, J.; ELSAYAD, K., 2024: Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells. NATURE PHOTONICS 18 (3), p. 276 - 10, doi: 10.1038/s41566-023-01368-w (BRILLOUIN)
KLÍMA, J.; WOJEWODA, O.; ROUČKA, V.; MOLNÁR, T.; HOLOBRÁDEK, J.; URBÁNEK, M., 2024: Zero-field spin wave turns. APPLIED PHYSICS LETTERS 124 (11), doi: 10.1063/5.0189394 (BRILLOUIN, EVAPORATOR, LYRA, KERR-MICROSCOPE, RAITH, ICON-SPM)
Krčma, J., 2024: Controlled Excitation of Magnons through Optically Induced Mie Resonances in Periodic Dielectric Nanostructures. BACHELOR'S THESIS (EVAPORATOR, RAITH, RIE-FLUORINE, KAUFMAN, BRILLOUIN, VERIOS)
WOJEWODA, O.; HOLOBRÁDEK, J.; PAVELKA, D.; PRIBYTOVA, E.; KRČMA, J.; KLÍMA, J.; PANDA, J.; MICHALIČKA, J.; LEDNICKÝ, T.; CHUMAK, A.; URBÁNEK, M., 2024: Unidirectional propagation of zero-momentum magnons. APPLIED PHYSICS LETTERS 125 (13), p. 1 - 6, doi: 10.1063/5.0218478 (TITAN, BRILLOUIN, KERR-MICROSCOPE, MAGNETRON, EVAPORATOR, RAITH, VERSALAB)
WOJEWODA, O.; HRTOŇ, M.; URBÁNEK, M., 2024: Modeling of microfocused Brillouin light scattering spectra. PHYSICAL REVIEW B 110 (22), doi: 10.1103/PhysRevB.110.224428 (BRILLOUIN)
WOJEWODA, O.; LIGMAJER, F.; HRTOŇ, M.; KLÍMA, J.; DHANKHAR, M.; DAVÍDKOVÁ, K.; STAŇO, M.; HOLOBRÁDEK, J.; KRČMA, J.; ZLÁMAL, J.; ŠIKOLA, T.; URBÁNEK, M., 2023: Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering. COMMUNICATIONS PHYSICS 6 (1), p. 1 - 10, doi: 10.1038/s42005-023-01214-z (RAITH, MIRA-EBL, EVAPORATOR, MAGNETRON, ALD, LYRA, ICON-SPM, BRILLOUIN)
KNAUER, S.; DAVÍDKOVÁ, K.; SCHMOLL, D.; SERHA, R.; VORONOV, A.; WANG, Q.; VERBA, R.; DOBROVOLSKIY, O.; LINDNER, M.; REIMANN, T.; DUBS, C.; URBÁNEK, M.; CHUMAK, A., 2023: Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures. JOURNAL OF APPLIED PHYSICS 133 (14), p. 1 - 8, doi: 10.1063/5.0137437 (RAITH, RIE-FLUORINE, SCIA, BRILLOUIN, EVAPORATOR, VNA-MPI)
WOJEWODA, O.; HRTOŇ, M.; DHANKHAR, M.; KRČMA, J.; DAVÍDKOVÁ, K.; KLÍMA, J.; HOLOBRÁDEK, J.; LIGMAJER, F.; ŠIKOLA, T.; URBÁNEK, M., 2023: Phase-resolved optical characterization of nanoscale spin waves. APPLIED PHYSICS LETTERS 122 (20), p. 1 - 6, doi: 10.1063/5.0151338 (RAITH, BRILLOUIN, LYRA, MAGNETRON, EVAPORATOR)
Klíma, J., 2023: Spin waves in non-trivial magnetic landscapes. BACHELOR'S THESIS, p. 1 - 69 (MIRA-EBL, LYRA, ICON-SPM, KERR-MICROSCOPE, BRILLOUIN, EVAPORATOR)
LAMB-CAMARENA, S.; PORRATI, F.; KUPRAVA, A.; WANG, Q.; URBÁNEK, M.; BARTH, S.; MAKAROV, D.; HUTH, M.; DOBROVOLSKIY, O., 2023: 3D Magnonic Conduits by Direct Write Nanofabrication. NANOMATERIALS 13 (13), doi: 10.3390/nano13131926 (MIRA-EBL, EVAPORATOR, BRILLOUIN)
FLAJŠMAN, L.; WOJEWODA, O.; QIN, H.; DAVÍDKOVÁ, K.; URBÁNEK, M.; VAN DIJKEN, S., 2022: Wideband Brillouin light scattering analysis of spin waves excited by a white-noise RF generator. APPLIED PHYSICS LETTERS 121 (23), doi: 10.1063/5.0124764 (BRILLOUIN, RAITH, EVAPORATOR)
Turčan, I., 2022: Magnetism in curved geometries. PH.D. THESIS, p. 1 - 117 (LYRA, BRILLOUIN, ICON-SPM, MIRA-EBL, KERR-MICROSCOPE, HELIOS)
Vaňatka, M., 2021: Static and dynamic properties of nanostructured magnetic materials. PH.D. THESIS, p. 1 - 113 (VERSALAB, VNA-MPI, TITAN, BRILLOUIN, MIRA-EBL, RAITH, KERR-MICROSCOPE, MAGNETRON, EVAPORATOR, VERIOS, WIRE-BONDER, LYRA)
TURČAN, I.; FLAJŠMAN, L.; WOJEWODA, O.; ROUČKA, V.; MAN, O.; URBÁNEK, M., 2021: Spin wave propagation in corrugated waveguides. APPLIED PHYSICS LETTERS 118 (9), p. 1 - 5, doi: 10.1063/5.0041138 (HELIOS, LYRA, ICON-SPM, RAITH, KERR-MICROSCOPE, VERSALAB, VNA-MPI, BRILLOUIN)
VAŇATKA, M.; SZULC, K.; WOJEWODA, O.; DUBS, C.; CHUMAK, A.; KRAWCZYK, M.; DOBROVOLSKIY, O.; KLOS, J.; URBÁNEK, M., 2021: Spin-Wave Dispersion Measurement by Variable-Gap Propagating Spin-Wave Spectroscopy. PHYSICAL REVIEW APPLIED 16 (5), p. 054033-1 - 10, doi: 10.1103/PhysRevApplied.16.054033 (VNA-MPI, BRILLOUIN, RAITH, EVAPORATOR, MAGNETRON, DIENER, VERIOS, RIE-FLUORINE)
Hache, T.; Vanatka, M.; Flajsman, L.; Weinhold, T.; Hula, T.; Ciubotariu, O.; Albrecht, M.; Arkook, B.; Barsukov, I.; Fallarino, L.; Hellwig, O.; Fassbender, J.; Urbanek, M.; Schultheiss, H., 2020: Freestanding Positionable Microwave-Antenna Device for Magneto-Optical Spectroscopy Experiments. PHYSICAL REVIEW APPLIED 13 (5), p. 054009-1 - 10, doi: 10.1103/PhysRevApplied.13.054009 (RAITH, RIE-FLUORINE, EVAPORATOR, WIRE-BONDER, BRILLOUIN)
Wojewoda, O.; Hula, T.; Flajsman, L.; Vanatka, M.; Gloss, J.; Holobradek, J.; Stano, M.; Stienen, S.; Korber, L.; Schultheiss, K.; Schmid, M.; Schultheiss, H.; Urbanek, M , 2020: Propagation of spin waves through a Neel domain wall. APPLIED PHYSICS LETTERS 117 (2), p. 022405-1 - 5, doi: 10.1063/5.0013692 (EVAPORATOR, KERR-MICROSCOPE, ICON-SPM, LYRA, BRILLOUIN, MIRA-EBL)
Flajšman, L., 2020: Magneto-optical study of the dynamic properties of magnetic nanostructures and nanostructured metamaterials. PH.D. THESIS, p. 1 - 152 (LYRA, KERR-MICROSCOPE, BRILLOUIN)
Wojewoda, O., 2020: Phase-resolved Brillouin light scattering: development and applications. MASTER'S THESIS (ICON-SPM, BRILLOUIN, EVAPORATOR, LYRA, MIRA-EBL, KERR-MICROSCOPE)